home *** CD-ROM | disk | FTP | other *** search
/ Giga Games 1 / Giga Games.iso / net / vir_real / faq / other / nrlntrfc.2 < prev    next >
Encoding:
Text File  |  1991-12-30  |  6.5 KB  |  126 lines

  1. 91-04/Neural.info
  2. From: "Marc W. Cygnus" <cygnus@cis.udel.edu>
  3. Subject: Neural Interfacing (some current info)
  4. Date: 29 Apr 91 04:14:32 GMT
  5. Organization: UDel Artificial Life Group
  6.  
  7.  
  8.  
  9. Over the past week or so I've seen a few articles speculating on the progress
  10. of the state-of-the-art in neural interfacing; following is some information
  11. on "current" (mid-1990) research which I hope will be useful to anyone
  12. interested in this field.  (I certainly am... you could call it a burning
  13. obsession of sorts :-)  References are at the end of the posting.
  14.  
  15. In the May 1990 issue of _Science_, Science intern Sarah Williams reports on
  16. a neural interface device developed at Stanford University [1].  The report
  17. contains information presented by Gregory Kovacs at a 1990 plastic surgeons'
  18. meeting held in May in Washington, D.C..
  19.  
  20. Apparently, she slightly misrepresented a few details in the report, because
  21. in the June issue there's a letter from Kovacs in which he "[clarifies]
  22. some statements made in... [the] article..." [2].  (nothing major, just
  23. details)
  24.  
  25. Here is a summary of the information in the article, corrected where
  26. necessary by drawing from Kovacs' letter:
  27.  
  28.   Gregory Kovacs (Stanford University), along with Joseph Rosen (Stanford),
  29.   Bernard Widrow (Stanford), and Chris Storment (Dept. of Veterans Affairs)
  30.   have tested a neural interface chip which allowed recording of action
  31.   potentials from individual neurons in their experimental setup.
  32.   
  33.   The chip was a little slice of silicon onto which a square array of 1,024
  34.   iridium microelectrodes were "stenciled."  Then, a "high-performance plasma
  35.   etching process" [2] was employed to drill tiny holes through each pad and
  36.   through the chip, after which the entire chip was coated with silicon
  37.   nitride.
  38.  
  39.   In their experimental setup, they implanted the chip in a rat's leg by
  40.   severing a nerve (presumably a "well-known" peripheral nerve), inserting
  41.   the chip in the cleft, and allowing the nerve to regenerate; during the
  42.   regeneration, individual nerve cells grew through the holes in the chip,
  43.   thereby providing a microelectronic link to each axon's activity.
  44.  
  45.   Kovacs says in his letter,
  46.       
  47.         We make no claim to have been able to stimulate "individual neurons."
  48.       While this may be possible with our device, our initial experiments
  49.       were not designed to test this.  In the pilot study, we demonstrated
  50.       recording from, and stimulation of, peripheral nerves.  We believe
  51.       that we were able to _record_ action potentials from individual
  52.       neurons.  However, there is a big difference between stimulating and
  53.       recording.  Current work is focused on determining how selective the
  54.       devices are in both of these modes. [2]
  55.  
  56.   The last paragraph of his letter is perhaps more important to those of us
  57.   wishing to understand the state of progress in this field.  He says,
  58.  
  59.         Attempts to fabricate and use such neural interfaces are not new.
  60.       Since the early 1960s experiments have been conducted along those lines,
  61.       but only recently have fabrication techniques been developed that allow
  62.       devices to survive in the body for extended periods.  Interfacing to
  63.       the nervous system will undoubtedly be done sooner or later, with or
  64.       without this project.  The only claim we make is that we are doing our
  65.       best to achieve this goal. [2]
  66.  
  67.  
  68. Another big advance related to the problem of direct neural interfacing came
  69. about fairly recently but I cannot remember my source.  If anyone knows of
  70. the research I'm describing in the following sentences, please email me!  If
  71. not, I'm sure I can dig up the references given a little time.  So, for those
  72. of you who don't do this automatically for missing references, please *take-
  73. what-i-say-with-a-grain-of-salt*, because this is strictly from memory.
  74.  
  75. Anyway, the work has to do with the fact that cells of the CNS aren't happy
  76. regenerating (one of the reasons spinal cord injuries are so traumatic).
  77. The reason CNS cells don't regenerate has apparently been either discovered
  78. or more precisely defined: it's not that they don't regenerate, it's that
  79. the body secretes a growth-suppression factor which keeps them from regen-
  80. erating.  A research group has found an anti growth-suppression factor which
  81. either suppresses or negates the effects of the natural factor; they have
  82. reported regeneration success in an experiment where they severed the spinal
  83. cord of a rat to which the anti growth-suppression factor was administered.
  84. I want to say the experiment involved actually _removing_ a small (>1mm or
  85. less) section of nerve so that the ends weren't touching, but I'm not really
  86. sure about that.
  87.  
  88. The stuff above, in conjunction with the Stanford experiments, is tremendously
  89. exciting, at least for me.  Of course, there exist complicating questions and
  90. problems beyond those associated with simply "tapping into" a single neuron.
  91. Is that really what should be done?  A big problem there is the fact that
  92. science has yet to really make a dent in the neural connectivity problem.
  93. It's one thing to have action potential information for every single axon in
  94. a bundle, but it's an entirely different thing to assimilate that information
  95. into something meaningful.  Much more often in research it's population
  96. potentials (intercellular potentials resulting from the combined microcurrents
  97. through a small population of neurons) which are correlated to events in
  98. the physical world.  Then again, the field of neural networks (in the silicon
  99. context, not the biological :-) might likely hold a solution to the inter-
  100. pretation problem.
  101.  
  102. I fancy the applications to VR interfaces, if (*when*!) that time comes, will
  103. appear long after rehabilitative applications are perfected, but progress is
  104. after all progress!
  105.  
  106.                                         -marcus-
  107.  
  108. ps: quotes taken without permission from issues of _Science_. I looked for
  109. copyright restrictions in the magazine but found none relating to information
  110. redistribution.
  111.  
  112. --------------------------
  113. 1. "Tapping into Nerve Conversations" (Research News), _Science_ 248,
  114.         p. 555 (4 May 1990).  There's a good uphoto of the earlier
  115.         64-electrode prototype chip.
  116. 2. "Neural Interfacing" (Letters), _Science_ 248, pps. 1280-1281
  117.         (15 June 1990).
  118.  
  119.  
  120. -- 
  121. -----------------------------------------------------------------------------
  122. "Opinions expressed above are not necessarily those of anyone in particular."
  123.  UDel Artificial Life Group (Graphics Support)  |  INET: cygnus@cis.udel.edu
  124.  114a Wolf Hall (Irisville) (302) 451-6993      | CompSciLab: (302) 451-6339
  125.  
  126.